
SECURITY  CLASSIFICATION  OF  THIS PAGE  rtVTien Data Enlorod; 

REPORT DOCUMENTATION PAGE 
1.    REPORT  NUMBER 

NRL Memorandum Report 5028 

2. GOVT  ACCESSION  NO, 

«.    TITLE f«/id Sufct/deJ 

CALCULATION OF FAR FIELD, SHIP RADIATION AND 
DIFFRACTION WAVES 

7.     AUTHORCs^ 

Henry T. Wang 

3.    PEHFORMINO ORGANIZATION  NAME  AND ACDRESS 

Naval Research Laboratory 
Washington, DC   20375 

II.    CONTROLLING OFFICE NAME  AND ADDRESS 

Office of Naval Research 
Arlington, VA   22217 

!*■    MONITORING  AGENCY  NAME 4   AODRESSCi' d///o«n< Irom Conlrollint Olllcaj 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3.    RECIPIENT'S CATALOG  NUMBER 

5.    TYPE OF  REPORT  &  PERIOD COVERED 

Interim report on a continuing 
problem  

6. PERFORMING ORG. REPORT NUMBER 

B. CONTRACT OR GRANT NUMBERCa; 

10. PROGRAM ELEMENT. PROJECT, TASK 
AREA 4 WORK UNIT NUMBERS 

61153N, RR0230141, 
(58)-1470-03 

12.    REPORT DATE 

March 28, 1983 
13.    NUMBER OF  PAGES 

21 
15.    SECURITY CLASS,  (al thla raport) 

Unclassified 
15«.    OECLASSIFI CATION/DOWN GRADING 

SCHEDULE 

16.    DISTRIBUTION  STATEMENT (al this Raport) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (ol tha mbaUmct antarad In Black 30, // dlllarant tram Raport) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Corttinua on ravaraa aida it nacaaaary and Idanttty by block numbar) 

Far field waves 
Radiation and diffraction 
Singularity distribution 
Strip theory 

20.    ABSTRACT (Continua an ravaraa alda II nacaaaary and Idanttty by block nuaibar) 

This report outlines an initial set of approaches for calculating the far field radiation and dif- 
fraction waves generated by a ship advancing at constant speed and oscillating in the presence of 
ambient ocean waves.   The commonly used strip theory for obtaining the near field solution is de- 
scribed in some detail.   Several approaches are given for obtaining the far field singularity distribu- 
tion.   These include conversion of the calculated near field singularity distribution or forces to a line 
of singularities, or use of an amplitude function which represents an integrated effect of the distribu- 
tion.   It is pointed out that the far field asymptotic behavior of the waves due to stationary 
  (Continued)  

DD   I  JAN"73    1473 EDITION OF   1 NOV «S IS OBSOLETE 
S/N   0102-014- 6601 

SECURITY CLASSIFICATION OF THIS PAGE (Wttan Data Sniarad) 



SECURITY   CLASSIflCATlON   QF   THIS   PAGE  f*T>.n   Dmim Enl»r,d) 

20.     ABSTRACT (Conttnutd) 

singularities is well known and relatively simple to calculate.   Several simplified approaches for 
calculating the corresponding behavior for the considerably more complex forward speed case 
are briefly discussed. 

SECURITY CLASSIFICATION OF THIS PAGErW>i«n DmI* Enfrtii) 

ii 



CONTENTS ,. ,   .-v;-:..._;.;....;..■;..-.   ., = ^ 

1. INTRODUCTION  I 

2. LINEARIZED FORMULATION OF PROBLEM   2 

J.          SIMPLIFICATIONS TO LINEARIZED THEORY ...^.. .......'  3 

4. STRIP THEORY (NEAR FIELD SOLUTION)   6 

4.1 Radiation Problem  6 
4.2 Diffraction Problem  8 

5. FAR FIELD DISTRIBUTION OF SINGULARITIES   9 

5.1 Relation to Near Field Singularities   10 
5.2 Relation to Added Mass and Damping Forces   11 
5.3 Kochin Function Approach   12 

6. FAR FIELD WAVE ELEVATION ; 12 

6.1 Asymptotic Evaluation for Line of Singularities   12 
6.2 Asymptotic Evaluation for Kochin Function   14 

T.          SUMMARY  15 

8. REFERENCES  16 

9. FIGURES ; :..;... „.... L  18 

111 



NRL Memorandum Report 5028 

LIBRARY 

Calculation of Far Field, Ship RadiatiM"^' ' ^Jf 
and Diffraction Waves 

HENRY T. WANG 

Fluid Dynamics Branch 
Marine Technology Division 

March 28, 1983 

NAVAL RESEARCH LABORATORY 
( I Washington, D.C. 

Approved for public release; distribution unlimited. 



CALCULATION OF FAR FIELD, SHIP RADIATION , 
AND DIFFRACTION WAVES 

1.  INTRODUCTION I 

This memorandum report outlines tlie initial set of proposed approaches to obtain the far field 
radiation and diffraction waves generated by a ship advancing at constant speed and oscillating in the 
presence of ambient ocean waves. Radiation waves are caused by the oscillation of the ship while the 
diffraction waves refer to the disturbance to the incoming ambient waves caused by the presence of the 
ship. 

The report first presents the linearized mathematical formulation which is often used to solve 
these problems. The assumptions underlying this formulation are briefly stated. The further 
simplifications which are required to arrive at the commonly used strip theory approach, as imple- 
mented in the DTNSRDC Ship Motion Program, are described. It is pointed out that this is a two- 
dimensional near field solution which is accurate near the ship hull. The mathematical convenience as 
well as the limitations resulting from these simplifications are discussed. The principal differences and 
similarities of the radiation and diffraction problems in the strip theory approach are indicated. 

The principal interest in the large majority of previous studies has been the calculation of the near 
field flow in order to obtain the added mass, damping, and exciting forces on the ship. The two steps 
required to convert the near field solutions to the calculation of the far field wave pattern are outlined 
in some detail. The first step is to convert the near field solution to an equivalent distribution of far 
field singularities placed on or near the hull of the ship. The second step requires the asymptotic 
evaluation of the far field wave pattern due to these singularities. 

Three approaches are described for obtaining the far field singularity distribution. The first 
approach involves directly converting the calculated near field two-dimensional singularity distribution 
to an equivalent distribution of three-dimensional far field singularities by using the method of matched 
asymptotic expansions. The second approach is somewhat similar to the first. It involves first convert- 
ing the calculated or measured forces on the two-dimensional strips to a distribution of near field singu- 
larities and then using the first approach to obtain the far field singularity distribution. This approach 
makes use of the abundant data on the added mass, damping, and exciting forces acting on ship hulls. 
The third approach characterizes the entire singularity distribution on the ship hull by an amplitude 
function which represents an integrated effect of the distribution. 

I 

It is pointed out that asymptotic expressions have been derived for the far field behavior of pulsat- 
ing sources and dipoles which are otherwise stationary. Thus, the evaluation of the far field wave pat- 
tern for ships with zero speed is relatively simple. The situation is quite different for the case of for- 
ward speed, for which the formulas and wave pattern of the singularities are considerably more com- 
plex. There have been relatively few studies which consider the far field behavior of these singularities. 
These studies are concerned with obtaining some general features of the far field behavior and are 
largely written in French and German. In view of the complexity of the forward speed case, some 
alternate simpler approaches (which may be suitable for low and moderate speed cases) are briefly indi- 
cated. 

Manuscript approved December 17, 1982. 



2.   LINEARIZED FORMULATION OF PROBLExM 

The problem is most often formulated for a coordinate system {x, y, z), shown in Fig. 1, moving 
in the x-direction with the mean forward speed f/of the ship. The moving coordinate system ix, y, z) 
is related to the fixed spatial coordinate system {XQ, >'O, ZQ) by 

(x, y, z) = Cx-Q- Ut, yo. -Q) (1) 

where t is time. Also, the frequency of encounter w in the moving coordinate system is related to the 
frequency WQ of incident waves in the fixed coordinate system by 

o) = &)o - UkQ cos /3 = ojQ cos fi (2) 
o 

where /3 is the angle between the direction of propagation of the incident wave and the x-direction 
k(^ = (OQIg = ITTIX is the wavenumber 
\ is the wavelength. 

The assumptions are made that the fluid is inviscid and incompressible, the flow is irrotational, 
and surface tension effects may be neglected. Under these assumptions, the flow field is given by the 
velocity potential $ (.v, y, z) which satisfies Laplace's equation 

ox-        by-        dz'- 

The total potential <1) may be written as the sum of the steady potential U^, which gives rise to the 
Kelvin waves, and the unsteady potential 6 

$ = uZ + <t>e''"'. (4) 

The principal interest in the present report is the unsteady potential (f). Assuming that the amplitudes 
of the incident, radiation, diffraction, and Kelvin waves are all small leads to the linearized formulation 
given below. Nonlinear formulations are given by Ogilvie and Tuck,' Newman,' and Maruo.-' How- 
ever, it should be noted that even the linearized problem is of considerable difficulty, and most of the 
current investigations focus on solving various simplifications of the linearized formulation. 

Under the above linearizing assumptions, the potential 0 may be further decomposed into 
separate potentials due to the incident wave, each of the six rigid body oscillations shown in Fig. I, and 
the diffracted wave. Assuming the motions to be sinusoidal at the encounter frequency w, the notation 
shown in Fig. 1 suggests that the motions of the ship are given by 

(^1, ^:, ^3- fii, n,, n3)e-'= (I,, ^2, f3, ^,, fj, ^,)e"-". (5) 

The unsteady potential 6 may then be written as i - •"• -*• 

(A = U {00 + 07) + X ^Al^'"' . \ ^^.   . (6a) 
7-1 

where A is the amplitude of the incident wave, • ■   > 

00 = — exp [kaiz - ix cos /3 ~ iy sin /3)],    """ (6b) 
Wo :, ■■;. . -  ;^ 

is the potential for an incident wave of unit amplitude whose direction of propagation is at angle /3 with 
the .v-axis, and 07 is the diffraction potential. The original problem is thus restated as the separate solu- 
tion of the diffraction problem where incident waves act upon the equilibrium submerged hull surface, 
and the radiation problem where the ship undergoes prescribed oscillations in the absence of incident 
waves. .'■';. 



On the mean free surface r = 0 each of the above potentials (bi, j = Q to 7, must satisfy the 
linearized free surface condition 

—^ (.To - Ut, y, z) + g^^ = 
dt'        " '-' ° dz 

9/      ax <t>, + g- dz 

on - = 0, j = 0,  1, .... 6, 7. . (7) 

On the mean submerged hull surface 5, the diffraction potential (hi must satisfy the kinematic condition 

^'^' ^'*o        „ ._, 
-7— = r— on 5 . (8) 
an an 

where n is the normal to the hull surface. The kinematic condition on S to be satisfied by the radiation 
potentials for the case of a ship moving at forward speed U have been derived by Timman and New- 
man'* 

9(1 f A) .      .. _ 
—^ = {ioja + Vx  [a X V(U(t>)]} -U (9) 

dn 

where a is the displacement of a point on 5. Recalling that the disturbance associated with the steady 
forward motion is small, and expressing a in terms of the oscillatory translations ? and rotations O 
defined in Eq. (5) and Fig. 1, the above equation becomes"'^ 

d6 
^ = icn, + 6'm, on 5, 7 = 1, ..., 6 (10) 

dn 

where 
» 

(/?!, rti", «3) = 77 ■ ■ - (11) 

(«4, «5, «6) = (7x 77) (12) 

7is the radius vector from the origin to a point on the hull surface 

(m\, mi, m^, mj) =-.0..f, ■,    . y , ■ , ... 

m, =  /2,,   ff7(; = -  /72. (13) 

The solution of even the above linearized problem is a formidable task. For example, the com- 
puter cost for the method developed by Chang*' to solve the above problem is nearly two orders of 
magnitude larger^ than the corresponding cost for the widely used DTNSRDC Ship Motion Program 
(SMP)^'^ which uses the simpler strip theory approach. This theory, which is described in greater 
detail later in this report, essentially converts the complex three-dimensional problem to a series of 
simpler two-dimensional problems. ,   ..    ■, 

3.  SIMPLIFICATIONS TO LINEARIZED THEORY 

Most of the simplifications to the above'linearized theory are based on making one or more of the 
following assumptions regarding the magnitude of the ship and wave, parameters^'^'^ 

B/L « I .    ' (14a) 



T/L«\ . - (14b) 

cu'L/g = ITTL/K «  1 (14c) 

oi^Llg = ITTL/X » 1 , (14^) 

where B is the beam (width) of the ship 
L is the length of the ship 
r is the draft of the ship. 

Assumptions (14a) and (14b) lead respectively to thin ship and flat ship (or planing ship) theories 
Assumptions (14c) and (14d) lead respectively to low frequency (or large wavelength) and high fre- 
quency (or small wavelength) theories. A relatively large number of studies are based on slender body 
theory, m which assumptions (14a) and (14b) are concurrently used. A particular form of slender body 
theory, in which assumption (14d) is also used, leads to the widely used strip theory which is described 
in detail in the following section. 

For motions in the vertical plane (surge ^,, heave £,, and pitch ^-), thin ship theory leads to a 
simple, direct solution for the potential 0, as follows. By using Green's Theorem, 6 can generally be 
expressed as the following integral over the hull surface S 

cb 
_l 
277 -// dn dn dS (15) 

where Gs is a pulsating source which satisfies Laplace's Eq. (3) and the free surface condition (7). 
The use of thin ship theory allows the integral to be evaluated over the vertical (v = 0) centerplane of 
the ship. The derivative B/Bn may then be approximated by d/dy. The crucial'simplification results 
from the fact the that dGs/dn = dGs/dy = 0 on the centerplane y = 0 since Gs is an even function in 
.V.   Equation (15) then simplifies to 

where d(ji/By is the prescribed velocity on the ship hull and is given in Eqs. (8) to (13). The above 
equation then represents a direct solution for <i. 

For the case of a nonoscillating ship advancing at constant speed U, thin ship theory yields useful 
results for the steady-state flow field. For the case of a ship executing oscillations in the vertical plane, 
Peters and Stoker'" obtain the disappointing result that the oscillations cause no disturbance to the 
fluid, i.e., the added mass and damping forces are zero. Mathematically, the difference between the 
steady-state and oscillating cases may be viewed as follows. The thin ship assumption, given by Eq. 
(14a), may be rewritten as 

5/1 = 0 (6g), 6s « 1. ■    '"■ (17) 

For a ship advancing at finite velocity, the following dimensionless form for U mav be taken to be 
order 1 

F-= U-/gL = 0(1) " (18) 

where F is the Froude number. The linearizing assumptions stated under Eq. (4) imply that the ship 
oscillations ^, are small ''y 

f^ = 0 (ec), 6. « 1, ,/■ = 1,  ..., 6. (19) 

Thus, the flow disturbance caused by the steady velocity is of first order, while the disturbance caused 
by the ship oscillations is of higher order. Physically, the results of Peters and Stoker simply state that 
a thin vertical disk excuting small oscillations in the vertical plane creates disturbances which are negli- 
gible to first order.   Newman" has carried out the analysis to second order and obtained nonzero 



expressions for the added mass and damping forces. However, to quote Newman, "Unfortunately, the 
second-order equations are rather complex...as might be expected from the use of a systematic pertur- 
bation procedure." .Accordingly, his proposed approach has not gained acceptance as a practical compu- 
tational method. 

It should be noted that thin ship theory predicts nonzero hydrodynamic disturbances for ship 
oscillations in the lateral j-direction (sway fj, roll $4, and yaw l^). However, the crucial direct solution 
feature for motions in the vertical plane is lost in this case. For motions in the lateral direction, the 
fundamental singularity is the dipole Gi given by ,       - : ■ • 

dGs ■' ■    ■   ! ■ ' 
GL = -~. - I (20) dv 

The quantity bGjbn = dGjdy = d-Gs/dy'^ is an even function in v and is not necessarily equal to 
zero on the vertical centerplane y = 0. Thus both terms on the right hand side of Eq. (15) must be 
retained. 

The lack of success of first order thin ship theory led Peters and Stoker'" to consider flat ship 
theory, which uses assumption (14b). Newman"''- points that this theory leads to the considerable 
complexity of solving singular integral equations. 

The low frequency assumption (14c) leads to two cases of general interest depending on the mag- 
nitude of the Froude number /"defined in Eq. (18): 

^' = 0(1) ..  \     I .        (21a) 

F'-O. (21b) 

Assumptions (14c) and (21a) reduce the free surface condition given in Eq. (7) to 

U^ ~r^ + g -T^^Oonz^O ! (22) 

and the hull boundary condition (10) to 

U mj on S, J = I, ... , 6. (23) 
dn 

Thus, all dependence on w is removed, resulting in a purely steady-state problem for a nonoscillating 
ship.   Assumptions (14c) and (21b) reduce the free surface condition to 

-^ = 0 ..., (24) 

and the hull boundary condition to 

■  -i^-i       -r-^ = idnj on S, J = \, ... , 6. .      (25) dn 

Equation (25) shows that the oscillatory character of the ship motions has been preserved. This large 
wavelength, low speed theory leads to considerable simplifications. For example, Newman'^ shows that 
the diffraction potential <pj can be approximated by 

(X) 

3<Ao   ,    ,   900   ,        d(t> 0 
4>i + "■;;— 02 "^—;^— </> dx  ^'       dy     '       dz (26) 

One simplification in the derivation of the above equation is that the derivatives of 0o can be taken to 
be constants, evaluated at a convenient location around the body. The present author''* has exploited 
the fact that this theory leads to body translational motions which tend to follow those of the surface 
wave to derive expressions for the forces acting on wide classes of buoys.   However, this case is not of 



primary interest for the present study due to the fact that Eq. (24) shows that the free surface behaves 
hke a flat plane. This implies the absence of radiation waves (and tlie damping forces which give rise to 
these waves). 

4.   STRIP THEORY (NEAR FIELD SOLUTION) 

Strip theory is a particular form of slender body theory which seeks to reduce the three- 
dimensional problem defined by Eqs. (1) to (13) to a series of simpler two-dimensional problems for 
cross sections (or strips) at various stations along the longitudinal ,v-axis. The resultant theory gives a 
near field solution applicable only in the neighborhood of the hull. The extension to the far field will 
be discussed in the following section. The near field solution is appropriate for computing the wave 
pattern near the ship and the forces acting on the hull. A number of different versions of strip theory 
and slender body theory have been used to analyze radiation and/or diffraction problems; see, for 
example, the survey by Newman.^ The description given below of the strip theory for the' radiation 
problem follows closely the formulation in the widely used DTNSRDC Ship Motion Program (SMP).-''^ 
The description of the solution for the diffraction potential differs from the formulation given in SMP. 
In SMP, the diffraction potential is not computed explicitly. Instead, the diffraction forces are com- 
puted from the radiation potentials. 

4.1   Radiation Problem 

In the SMP formulation for the radiation problem, the slender body assumptions, Eqs. (14a) and 
(14b), are rewritten in the following form involving the derivauves and normals in the neiahborhood of 
the hull 

A = o(l), ^ = 0(1/6), ^ = 0(l/e) ox 9v d: 

«, = 0(1), «,, = 0(l/e),  «, = 0(l/e). (27) 

These assumptions reduce the three-dimensional Laplace's Eq.  (3) to the following two-dimensional 
form in the v-z plane 

In order to reduce the free surface condition, Eq. (7), to two-dimensional form near the hull, assump- 
tion (14c) is used in the form 

This reduces Eq. (7) to the following standard speed independent two-dimensional form 

-cu'0,.+ ^-^ = 0, 7= 1, ... , 6. .     (30) 

The speed dependent boundary condition in Eq. (10) is elim.inated as follows.   The potentials <f)   are 
divided into two parts, ^ 

0y = 0j'+ 'J^'t'f' 7= 1,  ..., 6 ' (31) 

where the superscripts 0 and  U respectively denote speed independent and speed dependent parts, 
resulting in the revised boundary conditions 

9<^j'/'9« ^ icofij, J = 1 6 -, (32a) 

d(f)f/dn = icjmj, J = \, ... , 6. (32b) 



Use of the relations given in Eq. (13) leads to the following expression for 0^, completely in terms of 
the speed independent potentials (ji'j 

4>j = <i>%   ,/■= 1, 2, 3, 4 I 

ICO 

4>(, = 06° - — 02°. I   .        (33) 
1(1} 

In addition, the assumptions of strip theory which imply that there is no interaction between cross sec- 
tions lead to the following simple relations between the rotational motions pitch ij = 5) and yaw 
(y = 6) and the corresponding translational motions heave ij = 3) and sway (j = 2) 

(A_? = - x<j,l 4>^ = xcf>l (34) 

The formulation contained in Eqs. (27) to (34) reduces the original three-dimensional problem to 
the solution of the four fundamental two-dimensional speed independent potentials 

•Pfiy, z), J= 1, 2, 3, 4 

at a series of cross sections along the hull. The Frank close-fit source distribution method is used to 
solve this formulation.'' Briefly, the method models only the +y half of a given cross section, which is 
assumed to be symmetric with respect to the vertical x - z plane, as shown in Fig. 2. The actual 
continuous half-cross section is approximated by a series of A' straight line segments connecting N + 1 
input points (j,, z,) where >>, is the half-breadth of the section at depth Zj. A pulsating line source of 
strength 0,- is placed over each line segment, where Q^ varies from segment to segment. The source 
strengths over the -v half of the section are symmetric for the vertical modes (j = I, 3) and antisym- 
metric for the lateral modes (J = 2, 4), as follows 

Qii-y,. z,) = Q,(y„ z,)     7= 1, 3 I (35a) 

a(->'„ z,) =-G(v,, z,)     7 = 2,4. I (35b) 

The kinematic boundary conditions given in Eq. (32a) are used to obtain a system of .V complex alge- 
braic equations for the complex strengths Q,. This procedure is then repeated at a series of cross sec- 
tions along the length of the ship. 

The effect of forward speed is contained in the expressions for oij and qbg given in Eq. (33) (which 
are directly related to (t>j) and in the expression for the radiation forces 

fiTn = J ^ pn/dl 

=^J-piiw-uf-)j;^^,4},n,dl,J=\,...,6 I (36) 
"X    ■_, 

020 

where F,2D 'S the two-dimensional radiation force acting on a given cross section. 
C is the perimeter of the cross section ; 
^1, is the amplitude of the kxh mode of motion. 

The radiation forces F, on the entire hull are then given bv 

^j = SL ^mix)cLx.     7 = 1, ... , 6. (37) 

In spite of the many simplifications listed above, SMP appears to give reasonably accurate results 
for forces and motions compared to experiment'" and to a more complex three-dimensional approach.^ 
Thus, it will be used in the present study as the initial approach for obtaining the near field solution. A 
more complex unified strip theory developed by Newman and Sclavounos,''*' which accounts for an 
interaction between ship cross sections, may be used at a later stage if the additional accuracy is 
required. 



It should be noted that there are a number of inconsistencies in the above theory. Perhaps the 
most noticeable is the neglect of the convection term Ub/bx in the free surface condition, Eq. (30) 
and its inclusion in the force Eq. (36). Ogilvie and Tuck' have developed a more consistent strip 
theory which shows that most, but not all, of the higher order effects tend to cancel each other. The 
effect of the nonzero higher order corrections, which affect only the cross-coupling force coefficients, is 
not yet well estblished. 

4.2  Diffraction Problem 

SMP does not e.xplicitly calculate the dilTraction potential (hj. Instead, the diffraction forces /"P 
are computed from the values of a<^o/9« (where on is given in Eq. (6b)) and the previously calculated 
radiation potentials cfij and <^/ (Eqs. (31)-(34)) on the hull surface by using a generalized form of the 
Haskind relations, as follows 

^?'^n b6n 
~^- dS.   7= 1, ..., 6. (38) 
0/7 

The Haskind relations were originally derived for the case of zero speed. However, Newman'^ general- 
ized these relations to the forward speed case for rather general conditions. The principal case where 
the relations do not apply is for a thin ship in head seas, /3 = 180 deg. 

The  boundary condition  (8)  for 07  leads to several differences in the formulation from the 
previously discussed case for the radiation potentials 0,.   Equations (8) and (6b) show that 

^^ "67" = i7;;:"-'p f^'«'-'-'^''^^^^-'>^'"^^i ... Jo 

= f^ko = (o^/g, X, y, z, (3). (39) 

Oh the other hand, the four fundamental radiation potentials <f)f,J=l,2,3,4 have the functional 
lorm 

<t>f = fioj, y, z).   , (40) 

Since the x-dependence of 6-, is periodic, it is usual to write 6i as the following product 

</>7(,v, y, z) = <p7(y, z, WQ, /3) e""''"" (41) 

where   /Q = k^ cos ;8 
<t>j is a two-dimensional solution. 

Substitution of the slender body assumptions (27), and Eq.   (41) into the three-dimensional Laplace's 
Eq. (3) results in the following two-dimensional Helmholtz equation for $7 {y, z) 

d^<i>7    a^<i>7 
T;7 + ^ir-/o^7 = o (42) 

as opposed to a two-dimensional Laplace's equation for the radiation potentials.   A second difference is 
that the substitution of Eq. (41) along with assumption (27) into the free surface equation (7) yields 

-Wo <I>7 + g -^ = 0 ^ (43) 

whereas the free surface Eq. (30) for ch, is in terms of the encounter frequency w. 

The need to solve the Helmholtz Eq. (42) instead of Laplace's Eq. (28) makes the diffraction 
problem somewhat more difficult since the singularities appropriate for the Helmholtz equation must be 
used. Faltinsen,'8 Troesch," and Maruo-' solve the above formulation for zero and low speed cases. 
Faltinsen finds that "It would be time consuming to evaluate the solutions....for a ship with arbitrary 
cross sections." and obtains results for only circular cross section cases. 



Strictly speaking, the dependence of 07 on .v shown in Eq. (41) violates the strip theory assump- 
tion that there is no interaction between cross sections. For this reason, strip theory approaches either 
bypass the calculation of ^7, as in the previously described case of SMP which uses the Haskind rela- 
tions to calculate the diffraction forces, or attempt to eliminate the x-dependence shown in Eq. (41) by 
setting /Q = 0. This, in effect, simplifies the Helmholtz Eq. (42) to the simpler Laplace's Eq. (28). 
One obvious case where /Q = 0 is for beam seas, j8 = 90° Another case would appear to be for long 
waves such that 

« 1. (44) 
_  2TT _ "^d 

However, this would violate the strip theory assumption (!4d) that the waves are short. Newman'-^ 
shows that strip theory is applicable to the diffraction problem over a restricted range of \ such that it is 
short compared to the ship length L but long compared to the beam B 

B « \ « L. -      '      (45) 

In this restricted range, the diffraction potential is solved in a manner which is very similar to the radia- 
tion potentials'^ 

•■■■■■-...■ '■ 

07 = -/<^o (i/'2- ' sm/3i^3) e''^"-'™'^      : ,: ;    ^ !     (46a) 

9t/(2   , ^ 91//3  , 
-^iy, z) = n„ -~{y, z) = «, '     (46b) 
on ■      bn 

where i//, and ti/j are respectively the antisymmetric and symmetric two-dimensional potentials which 
satisfy Laplace's Eq. (28) and the free surface condition (43). For the case of/3 = 45 deg. Troesch'^ 
shows that the pressure distributions on the hull of an ore carrier obtained by using this simpler 
approach show only moderate differences from those obtained by using the more complex Helmholtz 
Eq. (42).   Hence, the formulation outlined in Eqs. (46a) and (46b) will initially be used to compute ^7. 

The above shows that two-dimensional solutions for the diffraction potential are more difficult 
and/or are applicable over a more restricted range of parameters than the corresponding solutions for 
the radiation potentials. For fully three-dimensional approaches, such as that developed by Chang,'' 
there is less difference between the radiation and diffraction problems since both are dependent on x. 

5.   FAR FIELD DISTRIBUTION OF SINGULARITIES 
'    ■ ■ I, 

The near field singularity distribution obtained by the above strip theory must be converted to a 
singularity distribution which is appropriate for calculating the far field wave pattern. One obvious 
shortcoming of the near field solution is that the pulsating sources resulting from the two-dimensional 
formulation gives waves of constant amplitude at large distances from the hull. Physically, the waves 
attenuate to zero at large distances due to cylindrical spreading. 

■ 

The present section will discuss three approaches for obtaining the equivalent far field singularity 
distribution. Since the formulation which will be initially used for the diffraction potential 07 is similar 
to the formulation for the radiation potentials 4>j, 7 = 1, ... , 6, the discussion essentially applies to 
both types of potentials. 

Far from the ship, the details of the ship hull are lost, and the hull disturbance may be taken to 
be caused by a line of pulsating singularities placed on the x-a.xis along the length L of the ship. In 
general, the outer potential 0; can be expressed in the form 

J I 

'^. = /, <7/|) + djiO -I- G,D(X-^, y, z) d^ I (47) 



where   ^ is the location of the source along the x-axis 
G3D is a pulsating source translating at velocity Urn the .v-direction 
9G3£)/9.K is a pulsating dipole 
Qj is tlie strength of the source distribution 
dj is the strength of the dipole distribution. 

The potential <A, may be taken to be the corresponding outer solution for the inner radiation potentials 
(bj, y = 1, ... , 6 as well as the inner diffraction potentials ibj, j = 2, 3. From symmetry considera- 
tions, qj = 0 tor the lateral modes (j = 2, 4, 6) and d, = 0 for the vertical modes (J = 1, 3, 5). 

5.1   Relation to Near Field Singularities 

The most direct approach, which will be described first, is to relate the strengths of this far field 
Ime distribution to the strengths of the near field surface distribution calculated bv using strip theory 
Since the cross section shape is lost in the far field, the singularity distribution over each cross section 
may be condensed to a single resultant singularity strength as follows. For the symmetric vertical 
modes fy = 1, 3, 5), for which Eq. (35a) applies, the resultant source strengths at'the cross section 
X = £, <Tj{^), is given by the following summation 

cr 
.V 

+ f/c5-, = 2 X0,A5,, y= 1, 3, 5 (48) 
(=1 

where the first equality is suggested by Eq. (31) 
A'is the number of line segments modeling the +y half of the cross section 
Asj is the length of the /th line segment. 

For the antisymmetric lateral modes (7 = 2, 4, 6), for which Eq. (35b) holds, the resultant source 
strength a-j is zero.   However, the resultant dipole strength fij is nonzero 

f.j = A." + UH, = 2 £ ^l^^llJl A5„ ,/ = 2, 4. 6.  ■ (49) 

Newman,^ and Ogilvie and Tuck' use the method of matched asymptotic expansions to derive expres- 
sions for the outer singularity strengths qj and d; in terms of the inner strengths cr, and fj,,. The 
essence of the method is that the inner and outer solutions are matched in an overlap region /whose 
distance from the ship hull is large compared to the beam B or draft 7" and small compared to the 
length L 

(B.  T) « r « L. (50) 

To second order accuracy in e, where (B/L,  TIL) = 0(e), the relation between the outer dipole 
strengths rf, and the inner strengths iij for the lateral modes is extremely simple 

dj = ^Lj == fj.J + Ujlj, J = 2, 4. 6. (51) 

That is, in slender body theory, there is negligible longitudinal interaction between cross sections for 
lateral motions and the strengths of the inner and outer dipoles coincide. (Recall, however, that the 
inner dipoles are two-dimensional while the outer dipoles are three-dimensional.) The relation for the 
vertical modes is somewhat more complex. In general, the outer source strengths qj are related to the 
inner strengths a-j by the following integral equation 

C!,(x) - -i- ^-1 /^ djiOfix - Od^ = <7j{x), y = 1, 3, 5 (52) 

where a-j  is the complex conjugate of o-, 
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fix - ^) is an interaction function defined by Eq. (4.13) in Newman.' However, for the two lim- 
iting regions where 

X = 0(1) (53a) 

X = 0(e) (53b) 

Eq. (52) may be approximated by 

■   qj~ aj = erf + U&j, J = I, 3, 5.                                                      (54) 

For these two wavelength regions, the inner and outer singularity strengths again coincide as in the case 
of the lateral modes. , 

In the present study, the initial approach will use Eqs. (51) and (54) to obtain the outer singular- 
ity strengths. If additional accuracy is required, the integral Eq. (52) will be used for the vertical 
modes. 

5.2  Relation to Added Mass and Damping Forces 

The second approach is somewhat more indirect than the first approach. In this approach, the 
computed forces acting on a cross section are first converted to a resultant inner singularity strength 
and then Eqs. (51) and (54) are used to obtain the outer singularity strengths. However, this approach 
does have the advantage that it would mal<e use of the many previous calculations of the forces on vari- 
ous cross section shapes; see, for example, the extensive calculations by Porter'" and the various results 
reported by Wehausen.'^ 

One motivation for this approach is that in infinite fluid, there exist the following simple relations 
between the dipole strengths dij and the added mass coefficients Aip ....   , 

2Z);   4,= ^5 (8,.; + ^,-/p), /, 7= 1, 2 t.        (55a) 

3Z):   4= 7^ (S,,.; +VP'. '. ./= I, 2, 3 ' (55b) 

where   S is the cross sectional area !       ■ 
Fis the body volume t 

S,y is the Kronecker delta function = 0 if / ^ J and = 1 if / = y • 
p is the fluid density. 

In the presence of the free surface, it is the damping coefficient S,y (and not the added mass 
coefficient Ajj) which gives rise to far field waves, where Ajj and B/j are given by 

9 co-A,f - iuiB^j ^-p Jj- (^. e''^')n,dl. , (56) 

By using Green's theorem on the radiation potential 0^ and its complex conjugate 0y, Newman- obtains 
the following relation between the damping coefficient and the two-dimensional far field wave ampli- 
tude Aj . . 

S,y= (pr/oj^) Uy|2, 7= 1, 2, 3, 4. (57) 

By using far field expressions for the source and dipole, he further obtains the following relations 
between Aj and the resultant inner singularity strengths 

1 ■■ ■ ' 
AJ = — iuilg) o-^, 7 = 1, 3 

== -y i(u)klg) ixj, J = 2, 4 (58) 
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where a-j and /x; are respectively the resultant inner source and dipole strengths which give rise to 
two-dimensional waves. By combining Eqs. (57) and (58), the desired relation between the singularity 
strengths and the damping coefficient is as follows 

(59a) a-1 = 2 ^<D Bjjlp 

- VwB~7p. M7 k (59b) 

The above formulation applies for y = i, 2. l. 4, Equations (33) and (34) show that <h^ and oif, are 
entirely in terms of <*, and (i,, respectively. In the case of the diffraction potential <h-,, the "damping 
coefficient" may be related to the component of the diffraction force Ff which is 90 degrees out of 
phase with the incident wave.   Ff is calculated in SMP by using the Haskind relation, Eq. (38). 

5.3   Kochin Function Approach 

The third approach is to characterize the singularity distribution over the entire hull by the Kochin 
function Hj{k, 0) which may be represented in the following two ways 

s 

Hjik, e)=-//y,(|, T), 0 f dS, 

9/ CIS, 7= 1, 

7=1.  ... 

(60) 

(61) 

where 9 is the direction of wave propagation with the .Y-axis 

yj is the strength of the singularity at ^, TJ, ^ 
/• _   „lk: + ik (icos9 + rism9}] (62) 

is a wave elevation function at depth r below the free surface for a wave propagating in the ^-direction. 
The Kochin function may be used in a variety of ways, including the evaluation of the forces acting on 
an oscillating body averaged over a period. Of principal interest in the present study is the fact that in 
the form given by Eqs. (61) and (62) the Kochin function represents an average of the singularity 
strengths weighted by the wave elevation function / In the following section, an extremely simple 
relationship is given for the far field wave elevation in terms of the Kochin function. 

6.   FAR FIELD WAVE ELEVATION 

6.1   Asymptotic Evaluation for Line of Singularities 

In the first two approaches given above, the far field wave elevation reduces to the asymptotic 
evalution of the following equation 

g   dl      ^ g 
iu> 

^dx 
<i>je'^', 7=1, (63) 

where 07 is composed of the antisymmetric potential >b2 and the symmetric potential ip^. Since the 
outer potentials are approximated by a line of oscillating sources and dipoles, Eq. (47). the problem 
essentially reduces to the asymptotic evaluation of Eq. (63) for a single oscillating source or dipole and 
then summing over all the singularities 

^'=4 ico — 
dx 

''""7 i(D — 
dx 

'ijm  5  <^:-o. 7 = 1, J, 3 

JL ^7m  ^ ^—' J = 2, 4, 6 
J   m=l dv 

(64a) 

(64b) 
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where M is the number of cross sections or strips and M„ is the axial distance between the wth and 
(m — l)st strips. 

In addition to the general case U > 0 shown in Eqs. (63) and (64), the special case t/ = 0 is also 
discussed at some length since it is considerably simpler. One simplification for U ^ 0 is that 
9/5/■ = /w, resulting in the following simpler expression for ^^ ; 

(65) 

That is, the value of t,j is simply an algebraic factor times the value of 0^. The principal reason for the 
simplicity of the U = 0 case is the considerable reduction in the complexity of the expressions for the 
source potentials as compared to the t/ > 0 case. Wehausen and Laitone'' give the following formulas 
for the potentials G^,D and Gf^ for oscillating stationary and translating three-dimensional sources 
placed at X = a, V = 6, z = c 

k + k 
k - k 

^k {z-O Jn(k'R) dk r ''0 

G^'D^-- — + ^ r d9 r dk F(9, k') 

(66) 

F{9   k) =  ^'^'''""'~"^'"'""''-'°'" cos ^k'^y - b) sin 9] (67) 
gk' - (w + k'U cos 61)- 

where only the real parts of the source potentials have been written ' 
r = V(.v - a)" + (>■ - b)^ + (z - c)^   , .■ I     ^ 
l/r is a Rankine or infinite fluid source .     .   , I     ;   . 
PKdenotes a principal value evaluation of the integral j 
R =^{x- a)' + {y - bf ;■""■■;                      ■; 
JQ is the Bessel function of order 0 i      . 
/■i = ylix - a)' + {y - b)^ + (z + c)\ ■                                        '      '.  \ 

The expression for the integral term in Eq. (67) is a considerable abbreviation of the complex expres- 
sion given in [22]. The actual integration interval is divided into three parts to account for the singular- 
ities arising due to the various zeroes of the denominator of the wave function F. ,     ' 

Asymptotic expressions for the behavior of G% for large values of R have been obtained by a 
number of authors (for example, [22], [23], [24]) "  ' ;   ■ . 

G3"ae'-'~-27re^'--^' gi(Rk—!T/-i) ^iu! _j_ g 

R 
(68) 

where — denotes an asymptotic approximation.   The wave elevation C is then obtained by using Eq. 
(65) and taking the real part 

Re-^ G" 3D — 2TT e k(z-c) sm Rk (69) 
^ -" g ' A/    TTJR 

Equation (69) is simply an expression for ring waves with center at the pulsating source and decayine at 
the rate Vl/R.   It should be noted that even though the pattern is circular around a given source, ~the 
pattern around an entire ship, which has sources placed along the entire length L, wiU not be circular 
Far field wave elevation for the dipole acV^.v is presumably obtained by simply taking B/dv of Eq 
(69).* 

*Olver" points out that derivatives of asymptotic relations are not always permissible. 
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Newman gives several references which investigate the far field behavior of Gj-^ for large values 
of R. These include studies by Brard,^* Becker,-^ Eggers,-'* and Hanaoka.-'^ However, these references 
do not derive complete asymptotic relations. Instead, they largely focus on derivina certain general 
features of the far field wave pattern. All of these studies as well as the work bv Wehausen and Lai- 
tone, ' show that the behavior of the wave pattern is quite different, depending on whether r is greater 
or less than 1/4 where r is given by 

^ =  • (70) g 
Thus, there is the added complexity of more than one type of asymptotic behavior. 

Two approaches will be concurrently pursued in the investigation of the far field wave elevation 
for the general case U > 0. The more straightforward approach is to continue a more careful study of 
[26] to [29] and additional references which investigate the far field wave elevation due to Gf^- The 
second overall approach would be to make use of the extreme simplicity of the U = Q case given by 
Eqs. (66), (68), and (69) or reduce the extremely complex U > 0 case given by Eq. (67), An obvious 
first step is to use Eqs. (63) and (64), which contain the effect of U in the time derivative, on the 
asymptotic form for G']o. It may be argued that this is an inconsistent approach in that U is' used in 
one part of the calculation (the evaluation of 0 and neglected in another part (the free surface condi- 
tion).^ This inconsistent approach has been used by Beck-° and Lee, O'Dea, and Myers^' (who lise the 
two-dimensional source G?£,) to calculate the near field wave pattern next to the ship hull. Also, SMP 
uses the inconsistent approach of neglecting U in the free surface condition (Eq. (30)) to calculate the 
radiation potentials but then including {/in calculating the resultant forces (Eq. (36)), which are rea- 
sonably accurate. The accuracy of this inconsistent approach for the far field wave elevation will be 
carefully investigated. 

A second, more complex, step would be to reduce the complexity of G^o by deriving solutions 
for small values of 6'in the free surface condition, Eq. (7). One approach would be to neglect the term 
involving U^ in Eq. (7). Another approach would be to approximate the terms involving 6'and if- in 
Eq. (7) by known functions, such as Gj'r,. 

6.2  Asymptotic Evaluation for Kociiin Function 

Finally, the calculation of the far field wave elevation using the Kochin function H (Eqs. (60) 
and (61)) is briefly discussed. Wehausen and Laitone-' give the following asymptotic evaluation of ^ 
derived by Kochin, which is restricted to the U = 0 case '' 

CM> 0) - ^ ^J^ H/K, 9) sin Rk- - (71) 

where Hj is the complex conjugate of Hj. Equation (71) shows that Cj is very similar in form to the 
wave elevation ^ for a source of unit strength, given in Eq. (69). If - = c = 0 in Eq. (69), which 
means that C is evaluated at the free surface for a source placed at the t^ee surface, the following 
expression for the ratio Cj/C results 

The right hand side of the above equation may be thought of as the "strength" of a single resultant 
"source-like" singularity which is equivalent to the weighted average of all the sources on the ship hull. 
Equation (71) then gives the wave elevation due to this weighted singularity. In the first two 
approaches described above, the contribution of each source to the far field wave is first evaluated and 
the resultant wave elevation is then obtained as the sum of all the individual contributions. The discus- 
sion following Eq. (69), whjch states that the resultant wave pattern for the entire ship is not circular is 
confirmed by the fact that Hj is a function of the direction 6. 
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7.  SUMMARY 

A somewhat detailed description is given of the linearized formulation for the radiation and 
diffraction problems. It is pointed out that even the linearized formulation is quite complex. Various 
simplified approaches including thin ship, flat ship, and long wavelength theories are shown to be either 
unsuccessful or inapplicable to the present interest of calculating the far field wave pattern. 

The high frequency (low wavelength) slender body strip theory, as implemented in the widely 
used DTNSRDC Ship Motion Program (SMP), is identified as a simple yet relatively accurate approach 
for calculating the flow field near the ship hull. This theory neglects the forward speed effect in the 
free surface condition as well as interaction in the longitudinal direction. A unified strip theory which 
accounts for longitudinal interaction is mentioned as a possible later approach. Strip theory uses two- 
dimensional sources to solve the radiation problem due to ship oscillations in the vertical plane (surge, 
heave, and pitch) while dipoles are used for oscillations in the lateral plane (sway, roll, and yaw). 

It is pointed out that the diffraction problem generally leads to the solution of a Helmholtz equa- 
tion instead of Laplace's equation for the radiation problems. However, for wavelengths which are 
intermediate between ship beam (or draft) and ship length, Laplace's equation may again be used. In 
this case, the solution for the diffraction problem reduces to the solution of a pair of potentials which 
are similar to the radiation potentials for sway and heave. 

It is shown that the near field two-dimensional singularities are not appropriate for calculating the 
far field wave elevation. Two somewhat similar approaches are indicated for converting the near field 
singularity strengths to a line of three-dimensional far field singularity strengths. In one approach, it is 
shown that the strength of the far field singularity at a given longitudinal station may be approximated 
by the resultant inner singularity strength for the cross section at the given station. This approximation 
is accurate to high order for the lateral modes and is reasonably correct for the vertical modes for long 
wavelengths of the order of ship length and short wavelengths of the order of ship beam or draft. A 
more complex integral equation approach may be used if more accuracy is desired for the vertical 
modes. In the second approach, it is shown that the far field singularity strength may be obtained from 
the calculated (or measured) damping force acting on the cross section. 

Once the far field singularity strengths have been determined, the far field wave elevation may be 
obtained by first calculating the contribution due to each singularity and then summing over all the 
singularities. It is shown that the potential for the stationary pulsating source is much simpler than the 
corresponding potential for the pulsating source moving at forward speed U. In particular, extremely 
simple expressions have been derived for the asymptotic far field behavior of the potential and wave 
elevation for the stationary pulsating source. Corresponding expressions for the dipole may be con- 
veniently obtained by taking lateral derivatives blby of the results for the source. Asymptotic expres- 
sions do not appear to have been derived for the pulsating source with f/ > 0. Instead, most studies in 
this area (which are often written in a foreign language) attempt only to identify major features of the 
complex wave pattern. It is pointed out that the most fruitful approaches in this case probably lie in 
simplifying the potential for t/ > 0 for, say, small values of f/to capture the essential effect of 6" in 
the free surface condition. A particularly simple first step would be to evaluate wave elevation by 
including f/in the time derivative operation on the potential for the stationary source. 

An alternate way of obtaining the far field wave pattern is to first calculate the Kochin function 
which is a weighted average of the singularity strengths over the ship hull. For the case of a stationary 
ship, U = Q. the expression for the resultant far field wave pattern is similar to the expression for a sin- 
gle source with "strength" which is proportional to the complex conjugate of the Kochin function. 
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